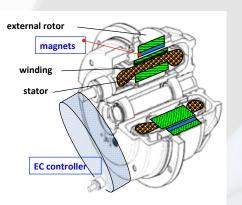

Elta Select Information Centre



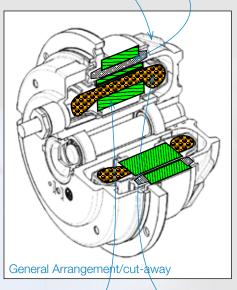
EC vs AC. The facts.

Main component orientation:-

✓ Motor rotor positioned outside the stator

EC Motors (electronically commutated)

- ✓ Commutation is required in both brushed and brushless DC motors.
- Mechanical commutation is performed by the brushes and commutator of brushed motors.
- ✓ In the case of brushless DC motors, the commutation is achieved electronically, hence the term Electronic Commutation.
- In permanent magnet external rotor EC motors, the stator which has the power applied to it sits within the rotor.
- A rotating magnetic field is created in the stator winding by means of Electronic Commutation.
- ✓ The permanent magnets inside the rotor are drawn around by the rotating stator magnetic field, causing the rotor to rotate.

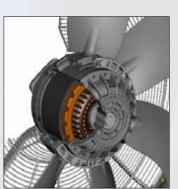

External Rotor AC Motor

AC Motor Mechanical Configuration

external rotor -

and laminations

stator laminations


stator winding

Main component orientation:-

✓ Motor rotor positioned outside the stator.

Fan Application

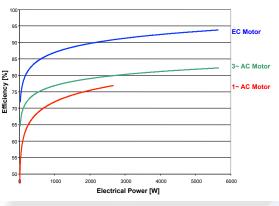
- ✓ Fan impeller either integral with the rotor, or bolted to the rotor.
- ✓ Very compact design, when compared with internal rotor motor.

Source: Ziehl-Abegg

Elta Select Information Centre

EC vs AC. Continued...

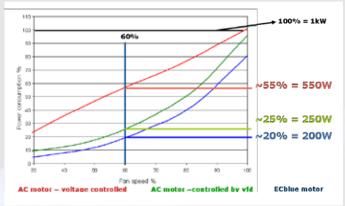
EC Motor Losses


Stator copper losses	→ Current flowing through stator windings creates heat.
Rotor copper losses	→ None.
Rotor slip losses	→ None.
Iron core losses	\rightarrow Hysteresis and eddy currents in the
	stator laminations only, creating heat.
Electronic losses	\rightarrow Low level losses from using electricity to
	drive electronics.
Other losses	→ Bearing friction, windage

AC Motor Losses

Stator copper losses	→Current flowing through stator windings creates heat.
Rotor copper losses	
Rotor slip losses	→Increasing slip increases the current flowing through rotor conductors, creating
Iron core losses	 more heat, especially at reduced speed. → Hysteresis and eddy currents in the stator and rotor laminations, creating heat.
Electronic losses Other losses	→N/A→Bearing friction, windage

EC Fans vs AC Fans



EC or AC driven fans?

- Relatively high capital expenditure, but reducing.
- ✓ Using permanent magnets means none of the electricity applied tto the stator is required to induce magnetic fields in the rotor- (higher efficiency).
- ✓ Speed control built into the electronic commutation electronics.
- Relatively low losses compared with equivalent AC motors, especially at reduced speed.
- ✓ Higher efficiency than equivalent AC motor, especially at reduced speed, so lower running costs and 'life-time costs'.

SUMMARY

- ✓ Relatively high capital expenditure, but reducing.
- ✓ Higher efficiency than equivalent AC fan, especially at reduced speeds.
- ✓ Speed control built into the electronic commutation electronics.
- ✓ Higher efficiency than equivalent AC fan, especially at reduced speeds, so lower running costs and 'life-time costs'.

EC or AC driven fans?

- ✓ Relatively low capital expenditure.
- Some electrical power is required to 'induce' magnetic fields in rotor laminations and induce current flow in rotor conductors- (lowered efficiency).
- Additional items required for speed control-additional cost for speed control.
- ✓ Relatively high losses (slip, core), compared with EC motors, especially at reduced speed - (lowered efficiency at reduced speed).
- ✓ Relatively high running costs and so relatively high 'life-time costs'.

SUMMARY

- ✓ Relatively low capital expenditure.
- \checkmark Lower efficiency than equivalent EC fan, especially at reduced speeds.
- ✓ Additional items required for speed control.
- Relatively high running costs compared with equivalent EC fan, and so higher 'life-time costs'.

Source: Ziehl-Abegg

